已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/09 04:53:39
已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式

已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式
已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式

已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式
由题目可以知道
bn=-4*2^(n-1)=-(2)^(n+1)
a(n+1)-an=-(2)^(n+1)
所以an-a(n-1)=-(2)^(n)
a(n-1)-a(n-2)=-(2)^(n-1)
,.
a2-a1=-(2)^(2)
左边加左边等于右边加右边
所以an-a1=-{(2)^2+(2)^3+.2^(n)}
=-{(2)^2*(1-2^(n-1))}/(1-2)
=4-(2)^(n+1)
a1=6
an=64-(2)^(n+1)
如有不明白,


bn=(-4)*2^(n-1)
∴a(n+1)-an=bn=(-4)*2^(n-1)
a2=a1+(-4)*2^(1-1)=60-4=56
这是关于an的递推表达式,可以写成:
an = a(n-1)+(-4)*2^(n-2)
=a(n-2)+(-4)*2^(n-2)+(-4)*2^(n-3)
.....
=a2+(-4)*2^(n...

全部展开


bn=(-4)*2^(n-1)
∴a(n+1)-an=bn=(-4)*2^(n-1)
a2=a1+(-4)*2^(1-1)=60-4=56
这是关于an的递推表达式,可以写成:
an = a(n-1)+(-4)*2^(n-2)
=a(n-2)+(-4)*2^(n-2)+(-4)*2^(n-3)
.....
=a2+(-4)*2^(n-2)+(-4)*2^(n-3)+...+(-4)*2^1
=56+(-4){2[2^(n-2)-1]}
=56-8[2^(n-2)-1]

an=56-8[2^(n-2)-1] ,n≥2
a1=60

收起

已知数列{bn}是首项为-4,公比为2的等比数列
则bn=(-4)*2^(n-1)=-2^(n+1)
又因a(n+1)-an=bn=-2^(n+1)
即a(n+1)-an=-2^(n+1)
推得an-a(n-1)=-2^n
a(n-1)-a(n-2)=-2^(n-1)
....
a2-a1=-2^2
叠加,中间减去
an-a...

全部展开

已知数列{bn}是首项为-4,公比为2的等比数列
则bn=(-4)*2^(n-1)=-2^(n+1)
又因a(n+1)-an=bn=-2^(n+1)
即a(n+1)-an=-2^(n+1)
推得an-a(n-1)=-2^n
a(n-1)-a(n-2)=-2^(n-1)
....
a2-a1=-2^2
叠加,中间减去
an-a1=-[2^2+2^3+....+2^n]=-2^2*[2^(n-1)-1]/(2-1)
an=60-2^(n+1)+4
所以通项公式an=64-2^(n+1)
希望能帮到你O(∩_∩)O

收起

已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn求证:数列bn成等差数列 已知数列{an}是首项a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a (n+1)-ka(n+2) ,n为正整数,数列{an}{b已知数列{an}是首项a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a (n+1)-ka(n+2) ,n为正整数,数列{an}{bn}的前 已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式 已知数列{bn}是首项为-4,公比为2的等比数列,又数列{an}满足a1=60,a(n+1)-an=bn,求数列{an}的通项公式 已知数列an是首项为3,公比为2的等比数列,bn=lgan 证明bn是等差数列,并求出它的通项公式 千恩万谢 已知数列an是首项和为1,公比为2的等比数列,bn的前n项和sn=n^21、求[an]和[bn]的通项公式2、求数列[bn*an]的前n项和 已知数列{an}是首项为10,公比也为10的等比数列,令bn=an*lgan(n属于N*),则数列{bn} 已知正数数列{an}的前n项和为Sn,且对任意正整数n满足4Sn=(an+1)^2,且数列b1,b2-b1,b3-b2,...bn-bn-1是首项为1,公比为1/2的等比数列.求证数列{an}为等差数列,求{bn} 已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+)已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+),数列{an}{bn}的前n项和分别为Sn 已知数列{bn}前n项和为Sn,且b1=1,b(n+1)=1/3Sn1.求bn的通项公式2.若数列an=3(n+1)bn,求数列前n项和Tn的表达式.(第一题已经求出当n>=2时,bn是首项为1/3,公比为4/3的等比数列,bn=1/3(4/3)^(n-2)当n =1时,bn 已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数列{an}...已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数列{an}的 已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn(1)求数列{bn}的通项公式;(2)求数列{Cn}的前n项和Sn答案要过程,详细~! 已知a>0,a≠1,数列{An}是首项为a、公比也为a的等比数列,令Bn=AnlgAn...已知a>0,a≠1,数列{An}是首项为a、公比也为a的等比数列,令Bn=AnlgAn1)求数列{Bn}的前n项之和Sn2)若数列{Bn}中的每一项总小于它后面 已知{an}是等比数列 首项a1=1,公比为q且bn=a[n+1] -an判断数列{bn}是否为等比数列已知{an}是等比数列 首项a1=1,公比为q且bn=a[n+1] -an(1)判断数列{bn}是否为等比数列,并说明理由.(2)求数列{bn}的通 已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn(1)求证bn是等差数列(2)求数列cn的前n项和sn 已知数列{an}是首项为2,公差为1的等差数列,{bn}是首项为1,公比为2的等比数列则数列{abn}前10项和等511 512 1023 1033 已知数列{an},{bn}满足a1b1+a2b2+a3b3+...+a(n-1)b(n-1)+anbn=(n-1)*2^n+1(n∈N*)(1)若数列{bn}是首项为1和公比为2的等比数列,求数列{an}的通项公式an.(2)若数列{an}是首项为a1,公差为d的等差数列,问数列 已知{an}是等比数列,公比q>1,其前n项和为Sn,且S3/a2=7/2,a4=4,数列{bn}满足bn=1/(n+log2a(n+1))1,求数列{an},{bn}的通项公式2,设数列{bn*b(n+1)}的前n项和为Tn,求证:1/3≤Tn